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Summary

Variance components have been estimated by three methods using two different but overlapping
data sets from a dairy cattle breeding scheme. The methods were HENDERSON’S method III,
MINQUE and a new method proposed by HENDERSON in 1980. Two different statistical models
of grouping sires were considered. For all methods, the exact variances of the estimators were
calculated for given true variance components and assuming normality of the data. As a byproduct,
the large sample variances of REML were obtained. A short discussion of the interpretation of the
two estimated variance components is given for the two statistical models taking selection into
account. A concise description is given of the three estimation methods employed. For a relatively
simple model, it is shown that they use different weighting factors for combining means and squares.

The new method proposed by HENDERSON (1980) has two possible disadvantages, namely
fewer degrees of freedom for estimating the error variance and one deriving from the relationship
with the method of contemporary comparison. From this limited investigation, it is concluded that,
in situations where the method might be employed, these disadvantages may not be of great
importance. The numerical results of the estimation with the two statistical models lie reasonably well
within the expected range. A noteworthy difference in efficiency was found between MINQUE
and HErtDEttsoN’s method III in favour of MINQUE, given that a reasonable prior estimate of
the ratio of the error component to the sire variance component was used in the estimation. As
expected, the new method was often inferior to MINQUE but it always retained a surprisingly
high efficiency relative to MINQUE for the estimation of the additive genetic variance and the
heritability. It is concluded that in situations where MINQUE is very difficult or impossible to
compute, the new method appears to be a useful alternative.
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Résumé

Contribution à l’étude de l’estimation des paramètres génétiques par les composantes
de la variance

Trois méthodes d’estimations des composantes de la variance ont été testées sur deux
échantillons (en partie communs) provenant d’un schéma de sélection de bovins laitiers. La
comparaison concernait la méthode III d’HENDERSON, le MINQUE et une nouvelle méthode
proposée par HENDERSON en 1980. Deux modèles statistiques de groupage des pères ont été égale-
ment considérés. Dans tous les cas, on a calculé les variances exactes des estimateurs pour des valeurs
données de composantes vraies en supposant la normalité des données. Par extension, on en a déduit
les variances du REML pour de grands échantillons. On a discuté également l’interprétation des
estimations pour les deux modèles statistiques en prenant en compte des phénomènes de sélection.
Les trois méthodes sont décrites brièvement. Partant d’un modèle simple, on montre qu’elles diffè-
rent par les coefficients de pondération des moyennes et des carrés.



La nouvelle méthode d’HENDERSON présente deux inconvénients possibles, à savoir un moindre
nombre de degrés de liberté pour estimer la variance d’erreur et une relation avec la méthode de
comparaison aux contemporains. De cette étude limitée, il ressort, toutefois, que ces inconvénients
seraient de peu d’importance dans les situations courantes d’application de la méthode. Les résultats
numériques relatifs aux deux modèles correspondent assez bien à la gamme de valeurs attendues.
Une différence appréciable a été observée en faveur du MINQUE, dans l’efficacité de celui-ci par
rapport à celle de la méthode III d’HErtDExsotv sous réserve d’une valeur satisfaisante de départ du
rapport de la variance d’erreur à celle du père. Comme prévu, la nouvelle méthode d’HENDERSON
est fréquemment inférieure au MINQUE, mais s’avère étonnamment compétitive en vue de l’estima-
tion de la variance génétique additive et de l’héritabilité. C’est pourquoi, elle doit être considérée
comme une alternative intéressante quand le MINQUE devient difficile, voire impossible à calculer.

Mots-clés : Efficacité, composantes de la variance, paramètres génétiques, MINQUE,
HENDERSON IIIIIV.

I. Introduction

This investigation arose from a larger project with the aim of obtaining estimates
of genetic parameters for the Swiss Braunvieh population. In this population a heavy
amount of crossing with US-Brown-Swiss is practised. Thus, the variance components
were estimated separately for three data sets:

i) offspring of pure Braunvieh sires, born 1971-1972;

ii) offspring of pure Braunvieh sires, born 1973-1975;

iii) and offspring of F, bulls, born 1972-1975.

The methods used were Maximum Likelihood (ML), Restricted Maximum
Likelihood (REML), Minimum Norm Quadratic Unbiased Estimation (MINQUE) and
Henderson’s method III (H III), (HARTLEY & RAO, 1967; PATTERSON & THOMPSON, 1971;
RAO, 1970, 1972; HENDERSON, 1953). For MINQUE and H III the exact variances of
the estimators (for given true variance components) were calculated and the large sample
variances of REML were obtained as a byproduct. The main results of this study are
given elsewhere (HAGGER et al., 1982).

In this paper we concentrate on the smallest data set, dealing only with the F,
bulls born between 1972 and 1975. With this data set we estimated variance (and
covariance) components for milk yield, percent fat (fat %) and percent protein (prot
%) using two overlapping data sets, two different statistical models and three estimation
procedures, namely MINQUE, H III and a new method proposed by HENDERSON (1980)
which in the present paper is called Henderson’s method IV (H IV). For all methods
used, the estimates as well as their exact variances (for given true variance components
and assuming normality) were obtained. Some results on REML were again obtained
as a byproduct.

Because the data set is fairly typical for many situations in Central Europe, the
main objective was to determine the relative efficiency of the methods, e.g. is it really
worthwhile changing from H III to MINQUE? The main criterion for judging this
question was the precision achievable (variance of the estimators) by these three
unbiased methods. In practice, however, the ease of computing the estimates is also
of great importance, whereas the ease of calculating the variances of the estimators is
rather unimportant. For practical use a rough estimate of this variance should be
sufficient, since we only want to decide whether the estimate should either be ignored
(variance very large), or should be used as obtained (variance rather small) or should
be combined with other estimates from the literature. In the last case the reciprocals
of the variances should be used as weighting factors, but even for this purpose rough
estimates should be sufficient.



II. Material and Methods

A. Data set

The data consisted of first lactation records collected from 1978 to 1981. Two

overlapping data sets were used. Data set 1 included all daughter records from F, bulls
having more than 7 daughters whereas data set 2 included all daughter records from F, I
bulls having more than 19 daughters. All bulls were born between 1972 and 1975.

Inncomplete lactations of 80 to 269 days of cows sold were extended to 305 days by
multiplicative factors. Lactation yields were also precorrected multiplicatively for age
at calving, days open and additively for alpine pasturing.

B. Statistical models and aspects of selected populations

The following statistical models were used:

where

y is a vector of observations (one trait at a time);
h is a vector of unknown fixed region x herdclass x year x season effects; these

effects are used as an equivalent to the more customary herd x year x season
effects.

g is a vector of unknown fixed sire group effects
u is a vector of random sire effects
e is a vector of random residuals

X, Z are known design matrices, relating [3 and u to y.

The difference between the two models lies in the definition of the sire groups.



In model I sires born in the same year were assembled in one group, giving 4 groups
altogether.

In model II groups were formed by grandsires, i.e. paternal half sibs were assembled
in one group, giving 17 groups for data set 1 and 15 groups for data set 2.

The following assumptions were made:

For calculating the variances of the estimators, it was assumed that e and u were
independently normally distributed. The vectors of fixed effects are of no interest in
our analysis (they are, apart from the definition of sire groups, mere nuisance factors).
In the two models the sire effect Ujk has different meanings. In model II it is the
deviation of the transmitting ability from the true paternal half sib mean, whereas in
model I it is the deviation of the transmitting ability from the true average transmitting
ability of all bulls born in the same year.

In model II the assumption of independently distributed sire effects Var(u)=Ia)
should be correct (apart from small maternal relationships), whereas with model I certain
existing relationships (paternal halfsibs) are ignored. With model I this results in an
underestimation of the sire variance. However, in addition to the last mentioned facts,
the interpretation of the parameters depends not only on the model but also on the
history of the population (BULMER, 1971; DEMPFLE, 1975) as outlined.

If we symbolize the additive genetic variance and the phenotypic variance of the
(conceptual) random mating base population by cr! and crP(Q! =crP-crA), we have for

In the base population we have K = K, = Kji = 1. After one generation of truncation
selection, where selection is characterized by intensity i, truncation point x and precision
p, and where the paths are indicated by BB, BC, CB, CC (BC-Bull to Cow, etc.) we
get:

After repeated cycles of selection the K-values decrease further and reach an

asymptotic value, but even in the extreme case (p2i(i-x) - 1 ! we have K> !; 3 K, ! !; 2
2 

3 2

!&dquo;&dquo;3’



To give an example: a simple well organised selection scheme for milk yield is
assumed with h2=0.25 in the base population and with selection operating only on first
lactation. 70 % of the cows are bred to produce replacement heifers and 0.2 % are bred
to produce bulls. The great majority of cows is either sired by selected sires or by test
sires. 100 bulls are tested each year on 100 daughter records and the best 5 bulls are then
used. For this example Table 2 shows the evolution of K values. These values are only
approximate, since it is assumed that even after repeated cycles of selection the breeding
values are still normally and independently distributed and that selection is done by trun-
cation and not by the more realistic censoring.

C. Methods of estimation

Three statistical methods were used, MINQUE, H III and H IV. For MINQUE
we have to calculate (notation as given in last section):

Properties of the estimators are:

V is proportional to ZZ’+ kl, where is any positive operational value used in the
computation. A should be as close as possible to the true ratio of ff! 2/ cru 2.

For H III we have to calculate:



The formulae for Var(a2) are similar to the ones given for MINQUE.
In order to describe H IV, the following observation is of importance: HENDERSON

(1972) pointed out that there is a connection between BLUP and MINQUE via the
Mixed Model Equations (MME), which is useful for both understanding and

computation.

Writing the MME for the model used, we have

Defining i = y - Xft - Z6 it can be shown that apart from scalars, we have with
MINQUE: 

! &dquo;&dquo;

In H IV we make use of Eq.(l) and absorb all fixed effects, which leads to :

Then the coefficient matrix is replaced by a matrix with diagonal elements identical
to those of Z’FZ + XI and with off-diagonal elements equal to zero. This is symbolized
by 

-

The solution for u is easy to compute and is used to calculate the following quadratic
form: 

-

This quadratic form is set equal to its expected value. A second quadratic form
for estimating Qe is needed and it is suggested that « any logical estimator of Qe, for
example the within smallest subclass mean squares» (HENDERSON, 1980) should be
utilized. The latter is undoubtedly very easy to compute but there may be other simple
estimators which are more efficient.

A solution for u can also be obtained directly if Eq.(1) is modified in the following
way:

D. Computational aspects

For data sets like the one described in Table 1, or larger ones, the computational
aspects become very dominant. For all three procedures Eq.(I) was the starting point
where, during reading in the sorted data, the region x herdclass x year x season effects
were absorbed and other necessary quantities were calculated. Then for MINQUE and
H IV an operational was added to the diagonal elements and u was estimated. Using
the following notation

it is well known that T can be calculated from the absorbed set of equations.



For MINQUE the expected values of e’e and u’u are calculated and the variances
and covariances of e’e and u’u are given by:

Having computed e’e and u’u with a given operational value of A, then the true
variances can be calculated with these formulae for a range of true X values. A similar
approach was taken for H III and H IV where well known formulae were used.

E. Comparison and discussion of the methods

Before reporting the numerical results, a general discussion of the methods is useful.
For discussion the most simple setting is used because otherwise the formulae are too
complex to give much insight.

Using the one factor model

the quadratic forms which are calculated for H III (H III in this case is identical to

HI) are:

For MINQUE we calculate:

For H IV use is made of Eq.(2) where we calculate (only q, is specified)



Thus, with H III the LS estimate of R + ui regarding u, as fixed is used for qo. For
q, the LS estimate of w ignoring ui is used and the squares are weighted by n;, the
number of observations in group i.

With MINQUE we use the BLUP estimate of p,+u; for qo and the BLUE estimate
(GLS estimate regarding ui as random) of R for q, and (n;/(ni+!»)2 as weighting factor.
If is zero (implying no variation within sires) the square of each sire is equally
weighted, regardless of ni, which is completely in agreement with intuition. If is very
large, each square has a weight proportional to the square of n;. Thus, depending on
k the weights of the squares can vary from being proportional to 1 up to n2. For a
given distribution of n, there should be a ! where the weights of MINQUE are in
similar proportion but not identical to n;, the weights used in H III. For the same model
a discussion of the weightings of the squares (using always w!) being in agreement
with the above mentioned results, but using the F-value of the Analysis of Variance
instead of X, was presented by ROBERTSON (1962).

It should be further noted that, if jju were known, then the weights used in MINQUE
for q, are proportional to the reciprocals of the variance of the squares, and therefore
well known weighting factors are used to combine these squares.

With H IV the LS estimate of )JL is used (as in H I1I), whereas the weights are
similar but not identical to those of MINQUE.

With regard to H IV several comments can be made:

i) Methods that have a high efficiency relative to MINQUE and that are easier to
compute are very desirable and urgently needed.

ii) Using the obvious estimator for Qe (the within smallest subclass mean squares)
quite a lot of available information may not be utilized. Consider the simple model in
sire evaluation

If there is a total of n daughter records from nu sires which are distributed over n,,
herds, then, with H III n - nu - n,, + 1 degrees of freedom (df) are used to estimate u 2
A similar number of df is used by MINQUE. For the obvious estimator only n-c df
are used (c-number of filled subclasses). In the extreme case of a completely balanced
block design we have (nh - 1)(n,; - 1) df for H III and zero for the obvious estimator,
since there is only one observation in each smallest subclass. In a typical dairy sire
evaluation scheme there may be few half-sibs in a herd x year x season, which would
lead to a drastic reduction in df. Even in our example using region x herdclass x year x
season we had 16777 df ( 15150 df) in data set 1 (data set 2) for H III and only 7395 df
(6808 df) for the obvious estimator, resulting in the error-variance of ae being more
than 2.2 times larger than with H III. As already mentioned, other estimators for Qe
than the « obvious one could be used, like the H III estimator or the MINQUE
estimator (e.g. with -> ! ). However, as can be seen from fig. 1, the MINQUE
estimator for À -+ &oelig; (sometimes referred to as MINQUE (0)) can be very inefficient;
whereas the H III estimator always has a high efficiency. Choosing a different estimator
than the obvious one, it should still be easy to compute, since this is the only justification
for changing from MINQUE to H IV.

iii) In a progeny testing situation, where 0 contains only fixed herd effects
(herdxyear x season) and u the transmitting abilities, the solutions of u are the

Contemporary Comparison (CC) estimates as was pointed out by POWELL & FREEMAN

(1974). In sire evaluation there were good reasons to move away from CC and use
more sophisticated methods. The question is whether the disadvantages of the CC



method are carried over to H IV. One major disadvantage of the CC method lies in
the fact that the competition, a sire has in a certain herd is not taken into account. It
is implicitly assumed that the mean of competing sires is the same in all herds. However,
if we have several subpopulations the effects of the subpopulations (the group effects)
are accounted for in H IV. In the context of estimating variance components we must
always have a random sample of sires and the daughters of these sires should be
distributed randomly over the herds. In this case we would expect that the disadvantages
of the CC method would not be of great importance in the estimation of variance

components. In order to investigate if there could be more bias with H IV than with
MINQUE or H III, the following example was considered: there is a number of herds
available, which are considered as fixed, thus no further assumptions about them need
to be made. A random sample of sires is drawn out of a well defined population. Given
that bulls were mated randomly over herds, without any assortative mating and without
any preferential treatment of the daughters, we would have good conditions for
estimating variance components unbiased. However, what happens if after drawing a
random sample of bulls, we get some information on them and order these bulls

according to this information (consider the trait type score at the age of one year,
where we could have a random sample of male calves, conduct a performance test and
then use all bulls in a progeny testing scheme for the same trait, allowing farmers the
choice of bulls). If we relabel the bulls according to the ordering (1 labelling the bull
with the highest order) we no longer have E(u)=0 0 and Var (u) = IOEfI but we have instead
E(u)=pJ.1.oITu and Var(u)=(1-p2)IIT!+p2VolT! where p is the correlation between the
true sire value and the information on which the ordering is based. J.1.0 is the vector of
expected values for order-statistics from the unit normal distribution and Vo is likewise
the variance-covariance matrix of the vector of order-statistics. The values for >o and

Vo are given e.g. by SARHAN & GREENBERG (1962, p. 193) and the formulae for E(u)
and Var(u) are standard results for associate variables (DAViD, 1970, p. 41). Now in
the dairy industry, it is not unlikely that some farmers use only the « very best testbulls »
whereas others use average or even below average bulls. This may even apply to a
trait like milk yield.

With all three methods considered, we compute quadratic forms, and in the standard
case set these equal to the expected values derived under the assumption of E(u)=0,
Var(u)=Icr!. In the example it is possible to derive the expectation under the condition
of ordering and nonrandom use of the sires and thus the bias can be calculated. Some
results are given in Table 3. From the few cases investigated out of the large number
of conceivable ones it seems that with larger daughter number the bias of H IV is
somewhat larger than with MINQUE and that H III is more robust against this departure
from the usual assumptions. It is well known (SEARLE, 1968) that H III gives unbiased
estimates of the variance components if there are nonzero covariances between the
factors of the model. However, the case investigated here, is different, because there
is essentially a correlation between the sires of the same herd. Knowing the value of
)ne sire utilised in a herd enables one to make informative predictions about the other
;ires used in the same herd. In the standard application of H III the expectation is
aken under the assumption of Var (u) = IIT! which does not apply for this example.
However, from this limited inference, these results cannot be used as a strong argument
against H IV in comparison to MINQUE.





III. Results and Discussion

A. Influence of the models on heritability estimates

Whereas with H III only one result is obtained, with MINQUE and H IV a multitude
of results are obtained depending on the values of used. The heritability estimates
for a = 15 for milk yield and = 9 for fat % and protein % are reported (Table 4). The
variance of these estimators from Model II is indicated in the last section in connection
with the figures 7 and 8. The variance from Model I is somewhat smaller. The h2 were

estimated under the assumption that K = K¡ = KII = 1. The resulting estimates for <J’Ã
(milk yield, MINQUE, data set 2) are 117751 kgz for model I and 138232 kg2 for model II

leading to an estimate of K,/K&dquo; of 0.85 which is well within the expected range.

Now the question is which h2 to use in practical situations e.g. for estimating
sires. This depends again on the model used. If we have a model like model I (sires
grouped by year, no relationship matrix) then from a bayesian point of view the

applicable ’h2 is that from model I, since it parameterizes best the a priori distribution
of the transmitting ability of test bulls. If, on the contrary, we use the full numerator
relationship matrix relative to the base population, the parameters of the base population
should be used and thus, the estimates from model II are more appropriate. However,
in theory they still underestimate the parameters of the base population since K and
Kjj not being unity is not accounted for in the estimation. In practice, however, it may
be very difficult to determine those coefficients with any reasonable precision.





B. Efficiency of the methods

The comparison of the efficiency of the estimators is shown in the figures 1-9.
There the following attitude is taken: each version of MINQUE or H IV with a given
operational value of (symbolised as !) has to be regarded as a procedure in itself,
since in practice only one such procedure will be utilized, where of course the true
state of nature, that means the true X, is unknown. Quite often, however, we can put
reasonable lower and upper bounds on it. For milk yield e.g., we are rather sure that
under our condition the following is true: 0. I < h! < _4. In addition, with paternal half
sibs we have the relation B=(4&mdash;h!)/h!. Instead of and !, we can therefore use h2
and h2, a parameter more familiar to geneticists.

Thus the choice of f¡2 is often not difficult and the procedure has also to be judged
only in this range. All results are given relative to the best possible procedure (in the
sense of minimum variance) having the properties of unbiasedness and translation-
invariance and utilizing all data. For each true h2 there exists an optimal procedure,
but it is unknown to the user. The minimum variance utilised in the comparison is
identical to the large sample variance of REML.

For the comparison shown in the figures the inefficiency is defined as follows:

If the variance of procedure A is x times as large as the variance of the best

procedure it can be roughly interpreted as follows: in order to reach the same precision
with procedure A as with the best procedure the design (with the given unbalancedness
and average daughter number) has to be x times as large. Sometimes, however, the
higher precision may not be very crucial e.g. for the estimate of since with any
procedure (e.g. H IV) we may get a reasonably good estimate.

C. Efficiency for estimating a;

In the figure 1 the inefficiencies of the procedures with respect to the best procedure
are shown. As expected the efficiency of the estimator used for H IV is low since it
utilises much fewer df. The H III estimator is only slightly inferior to the best estimator
whereas the MINQUE estimator with h2 much smaller than h2 is very inefficient. There
it can even occur (h2=1, h!=0.01), that using the reduced data set the estimate is
more precise than using the full data set.

D. Efficiency for estimating Qu

In the figures 2, 3 and 4 the inefficiencies of the procedures for estimating OE) with
respect to the best procedure are shown. The main conclusions from these figures are:

i) By a good choice of h2 a large superiority of the MINQUE estimator over the
H III estimator is often achieved.

ii) By using an appropriate value of h2 (such that I h2 - h21 is small) the H IV
estimator is, as expected, inferior to the MINQUE estimator. However, it always retains
a high efficiency. This efficiency is highest for very small h’, since with respect to the
quadratic form for q,, H IV and MINQUE converge for 112 - 0, but they are different
for qo, where a form is used for H IV which is less efficient. In our data set, the
inefficiency of H IV is 1.013 for h2 = h2 = .O1 and 1.151 for h2 2=fil= 1.





iii) By using a h2 which is far off the true value of h2 both MINQUE and H IV
are very inefficient. For MINQUE with h2=0 (MINQUE (0)) this was also shown by
QUASS & Bor.Gla.NO (1979). If h2 is large but a small value of h2 is used, H IV decreases
somewhat faster in efficiency than MINQUE and if h2 is small and h2 large, the efficiency
of MINQUE decreases faster. The reason for this behaviour is not obvious to us and
it is unclear if this is just peculiar to the present design.

iv) Comparing the figure 2 and the figure 4 for the optimal method, it can be seen
that reducing the data set has quite different effects depending on h2. If h2 is very low
e.g. h2=0.01, the inefficiency is small (I.OS) wherease with h2=1.0 the inefficiency is
large (1.88).

v) If a procedure other than the optimal one is used, reducing the data set can
improve the estimate. This is true for all three methods considered.

It is at first sight surprising that an estimate can be improved by ignoring data i.e.
ignoring information. For the Analysis of Variance method in the one way classification
(then identical to H III) this was also pointed out by ROBERTSON (1962) and by SWIGER
et al. (196!). A look at the formulae in section II.E. explains that paradox. The h2 are applied
to calculate the weights used to combine the means and to combine the squares. If the
weights are far off the optimal values then it can easily happen that the estimator

combinin all squares is less precise than the estimator combining only a subset of the
squares. If we have two estimates of w, §i and J.L2 with

is less precise than §i With optimal weights that will never happen. With H III the
weights are completely given by the method and they are in no case optimal (except
all n; are equal) but in the present data they are never very extreme. It should be
observed, however, that in this data set MINQUE with h! = .05 is always better than
H III (strictly speaking the superiority was determined for h2=.01, .025, .05, .129, .15,
.20, .25, .40, .60, 1.0), and the MINQUE with hz=.25 is inferior only with very small
h2 but is considerably better than H III over the remaining range.

A look at the formulae in section ILE. also explains the observation noted under iv).
With a low h2, bulls having few daughters do not contribute much information. In the
optimal method they are weighted not very heavily, whereas with X = 0 each bull,
regardless of daughter number gets equal weight (for q;). With progeny testing in a
random mating population it is always true that X -- 3, (h2,,;; 1) thus for the breeding
scheme considered, the weights would differ, but not much for h2 -+ 1. In this case

reducing the data set implies ignoring a lot of valuable information.

Another observation, which is given in Table 5, indicates that with H IV the smallest
variance is not achieved if hz = h2. For example if h2 = .25 then h2 = .40 gives a slightly
smaller variance than hz = .25. From our calculations it is not possible to give empirically
the best value of h2 for our data set. This observation agrees with one made by
HENDERSON ( 19RO).







E. Efficiency for estimating h2

In the figures 5 to 9 the variance of h2 is shown. These variances were computed
using the usual Taylor Series approximation (KENDALL & STUART 1969, p. 232). The
main conclusion from these figures is the relatively high efficiency of H IV compared
to MINQUE in spite of the low efficiency of the estimator used for Qe. In the case
investigated this does not have a large effect, since the variance of h2 is dominated

by the variance of §fl. For the data set given, the lowest possible s.e. for hz are 0.006,
0.012, 0.033, 0.045 and 0.077 for h2=0.01, 0.05, 0.25, 0.40 and 1.0 respectively.

A further observation can be made by comparing the figure 2 and the figure 6.

Though MINQUE with fi2=0.05 was always superior to H III for estimating Q!, this
is not true for estimating h’. The reason is found from the figure 1, where it can be
seen that for estimating cr,2 H III has always a very high efficiency, whereas MINQUE
can be quite inefficient for a large value of I h2 - h2/. Since for estimating h2 both Qe
and 5fl are needed, the lower variance of !72 from MINQUE is more than compensated
for by the larger variance for Qe in case of h2 = 0.05 and h2 - 1.

IV. Conclusion

From the results presented and from the more theoretical considerations we
conclude that in data sets and models like the ones investigated (which we believe are
very common) the judicious use of MINQUE can improve the estimates of genetic
parameters quite considerably compared to the H II1 estimates. The H IV estimators
are, as expected, not as good as the MINQUE estimators, but they showed nevertheless
a very high efficiency for estimating ar2 and h2. One suspected weakness of the H IV
estimator against violation of the model assumptions which it inherited from the CC
method does not seem to be of great importance according to our limited study. Thus
if MINQUE is impossible or very difficult to compute, H IV seems to be a useful
alternative.
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